スキップしてメイン コンテンツに移動

米国での大型倒産がリーマンショックルを上回るとの予測


日本でも米国でも、COVID-19の惨憺たる被害にも関わらす、株式市場は堅調である。特に本では、上場企業のCOVID-19に起因するデフォルトは1件も生じていない。ところが、あめりかでは、来月以降、倒産の「Big Wave」が来るのではないかとの予測が示された。

ニューヨーク大学のアルトマン(Altman、Edward I)は信用リスク分析で著名な研究者である。彼がカリフォニア大学(UCLA)に提出した博士論文以来一貫して、デフォルト予測モデルからデフォルトをめぐる法制度まで、信用リスクに関する多方面の研究をおこなってきた。

かれは、最近、NY Timesのインタビュー(A Tidal Wave of Bankruptcies Is Coming
において、今年は負債総額10億ドル(1,100億円)以上の大型の企業の倒産が続出するとの予測結果をあきらかにした。アルトマンによると、2009年のリーマンショック時には負債総額が10億ドルを超える倒産は49件であったのに対し、ことし2000年にはその数が66件にもなると明らかにしている。既にHertzレンタカーなど著名な上場企業の倒産が始まっている。彼の予測結果は、インタビューでは明示されていないが、ニューヨーク大学のビジネススクール(Stern)で、彼が設立したソロモンセンターでのモデルから算出されているとおもわれる。

日本では、毎週示しているように、上場企業の株価が意味するデフォルト確率は極めて低い水準をを保っている。米国における大型の倒産の波が、日本にたいしどのようにに影響するか、注意すべきであろう。

コメント

このブログの人気の投稿

感染症モデル入門 (3) Excelで感染症 SIRモデルをシミュレーションする

感染症流行をExcelでシミュレーションする(ファイルがダウンロード出来ます)。 1.準備:ファイルのダウンロードをする。 SIRモデルのわかりやすい(つまり最も簡単な)Excelシートを作成した。Excelファイルを用いたシミュレーションは以下の二通りの方法で実行できる。 1.1 「Google スプレッドシート」を用いてオンラインでSIRモデルのシミュレーションを行う 。  オンラインでシミュレーションをする場合には、Google スプレッドシートをつかいます。「 ここ 」をクリックしてください。「感染症数理モデル_入門と応用_森平_2020-05-29」というファイルがGoogle スプレッドシート上で開くはずです。次のような画面を見ることができます。 携帯などから利用していて、通信環境などが良くないときには、オフラインでの実行をおすすめします。>ファイル?オフラインで実行する、とすれば、自分の携帯にダウンロードしてあるGoogle スプレッドシート上でこのプログラムが実行できるはずです。 1.2 Excelファイルとしてダウンロードして、自分のPC上でシミュレーションをおこなう。  Excelシートとして使い時は、上で示したGoogle スプレッドシートのメニュー上で >ファイル>ダウンロード>MicroSoft Excel (.xlsx)  としてファイルをExcelプログラムしてダウンロードしてください。ダウンロードしたファイルを実行すると、次のような画面が現れるはずです。 2.初期値とパラメータ値を設定する。 2.1 Excelのシートで説明しよう。1行目は変数名とパラメー名前である。2行目の薄緑色のセルに具体的な数値を与える必要がある。ここでは次のような値を初期値とパラメータ値として設定している。 1)  感染可能人数の初期値:$S_0=100$人 2)  感染者人数の初期値:$I_0=1$人 3)  回復人数の初期値:$R_0=0$人 4)  感染率:$\beta=0.01$,つまり1パーセント 5)  回復率:$\beta=0.1$,つまり10パーセント (削減率については今回は計算結果に影響の無いようにしている) これらの数値を入力すれば、直ちに50日間の感染症流行の推

感染症モデル入門 (5) 再生産数Rtとそれに基づくリスク管理

再生産数$R_t$を理解する。 1.再生産数とはなにか? SIRモデルから導出する。 離散的なSIR感染症モデルの2番目の式(2)を次のように変形する。 \begin{eqnarray}   {I_{t + 1}} &=& {I_t} + \beta {S_t}{I_t} - \gamma {I_t} \hfill \label{eqtn:1} \\    \Rightarrow \,\,\,\,\,\,{I_{t + 1}} - {I_t} &=& \left( {\beta {S_t} - \gamma } \right){I_t} \hfill \nonumber \\    \Rightarrow \,\,\,\,\,\,\frac{{{I_{t + 1}} - {I_t}}}{{{I_t}}} &=& \left( {\beta {S_t} - \gamma } \right) \end{eqnarray}  最後の式1の左辺の「感染者数の伸び率」が0を超える(下回る)ことは、感染人数$I_t$が増加(減少)することを意味する。言い換えれば、右辺が、 \[\begin{gathered}   \beta {S_{t}} - \gamma  > 0 \,\,\,\,\,\,\Rightarrow \,\,\,\,\,\,{S_{t}} > \frac{\gamma }{\beta } \hfill \\ \end{gathered} \] であれば、感染者数は増加する。 両辺を $\gamma/\beta$ で割ると, 明日の時点における再生産数を得ることができる。 \begin{equation} \boxed{\,\,{{\bar R}_t} \equiv {S_t}\frac{\beta }{\gamma } > 1\,\,} \end{equation}  これを時点$t$における実行再生産数と呼ぶ。回復人数を示す$R_t$と区別するために、$R$の上にバーを付けて再生産数$\bar{R}_t$としている。この意味について以下で議論する。その前に感染症の「閾値定理」と「基本再生産数」を定義する。 2.基本再生産数$\bar R_0$の

新型コロナ対策の三種の神器とは、著名な医学雑誌掲載論文の結論

新型コロナ対策の効果は? メタ分析の結果が発表 新型コロナウィルスにどのように立ち向かうべきか? 決定的な特効薬やワクチンがまだ実現していない現状では、100年前のスペイン風邪の世界的な流行と同様な方法しか無いのが、現状だろう。そこで、  医学の研究誌として有名な「 The Lancet 」に注目すべきと言うか、やっぱり、という論文が掲載されました。以下のURLからも無料でダウンロードできます。 Chu, D. K., Akl, E. A., Duda, S., Solo, K., Yaacoub, S., Schünemann, H. J., Chu, D. K., Akl, E. A., El-harakeh, A., Bognanni, A., Lotfi, T., Loeb, M., Hajizadeh, A., Bak, A., Izcovich, A., Cuello-Garcia, C. A., Chen, C., Harris, D. J., Borowiack, E., … Schünemann, H. J. (2020). Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: A systematic review and meta-analysis. The Lancet,. https://doi.org/10.1016/S0140-6736(20)31142-9 これは、数百の論文から厳選した論文をさらに統計的に分析し、そこから共通して見られる、しかも確度の高い結論を導き出そうとするメタ分析という手法(統計パッケージSTATAでも利用できます)をつかって、新型コロナウィルス対策として何が重要なのかを見つけ出そうとしたものです。下の図がその結論(日本語の説明を加えておきました)なのですが、 マスクをすること、適切な社会的距離を保つこと、目の防護シールドをつけることは他感染者確率を減らすに有効であることを示しています。もし、そうしたことをしないと感染確率が、そうでない場合に比較して相当大きくなることをしめしています。  つまり、