スキップしてメイン コンテンツに移動

米国での大型倒産がリーマンショックルを上回るとの予測


日本でも米国でも、COVID-19の惨憺たる被害にも関わらす、株式市場は堅調である。特に本では、上場企業のCOVID-19に起因するデフォルトは1件も生じていない。ところが、あめりかでは、来月以降、倒産の「Big Wave」が来るのではないかとの予測が示された。

ニューヨーク大学のアルトマン(Altman、Edward I)は信用リスク分析で著名な研究者である。彼がカリフォニア大学(UCLA)に提出した博士論文以来一貫して、デフォルト予測モデルからデフォルトをめぐる法制度まで、信用リスクに関する多方面の研究をおこなってきた。

かれは、最近、NY Timesのインタビュー(A Tidal Wave of Bankruptcies Is Coming
において、今年は負債総額10億ドル(1,100億円)以上の大型の企業の倒産が続出するとの予測結果をあきらかにした。アルトマンによると、2009年のリーマンショック時には負債総額が10億ドルを超える倒産は49件であったのに対し、ことし2000年にはその数が66件にもなると明らかにしている。既にHertzレンタカーなど著名な上場企業の倒産が始まっている。彼の予測結果は、インタビューでは明示されていないが、ニューヨーク大学のビジネススクール(Stern)で、彼が設立したソロモンセンターでのモデルから算出されているとおもわれる。

日本では、毎週示しているように、上場企業の株価が意味するデフォルト確率は極めて低い水準をを保っている。米国における大型の倒産の波が、日本にたいしどのようにに影響するか、注意すべきであろう。

コメント

このブログの人気の投稿

感染症モデル入門 (3) Excelで感染症 SIRモデルをシミュレーションする

感染症流行をExcelでシミュレーションする(ファイルがダウンロード出来ます)。 1.準備:ファイルのダウンロードをする。 SIRモデルのわかりやすい(つまり最も簡単な)Excelシートを作成した。Excelファイルを用いたシミュレーションは以下の二通りの方法で実行できる。 1.1 「Google スプレッドシート」を用いてオンラインでSIRモデルのシミュレーションを行う 。  オンラインでシミュレーションをする場合には、Google スプレッドシートをつかいます。「 ここ 」をクリックしてください。「感染症数理モデル_入門と応用_森平_2020-05-29」というファイルがGoogle スプレッドシート上で開くはずです。次のような画面を見ることができます。 携帯などから利用していて、通信環境などが良くないときには、オフラインでの実行をおすすめします。>ファイル?オフラインで実行する、とすれば、自分の携帯にダウンロードしてあるGoogle スプレッドシート上でこのプログラムが実行できるはずです。 1.2 Excelファイルとしてダウンロードして、自分のPC上でシミュレーションをおこなう。  Excelシートとして使い時は、上で示したGoogle スプレッドシートのメニュー上で >ファイル>ダウンロード>MicroSoft Excel (.xlsx)  としてファイルをExcelプログラムしてダウンロードしてください。ダウンロードしたファイルを実行すると、次のような画面が現れるはずです。 2.初期値とパラメータ値を設定する。 2.1 Excelのシートで説明しよう。1行目は変数名とパラメー名前である。2行目の薄緑色のセルに具体的な数値を与える必要がある。ここでは次のような値を初期値とパラメータ値として設定している。 1)  感染可能人数の初期値:$S_0=100$人 2)  感染者人数の初期値:$I_0=1$人 3)  回復人数の初期値:$R_0=0$人 4)  感染率:$\beta=0.01$,つまり1パーセント 5)  回復率:$\beta=0.1$,つまり10パーセント (削減率については今回は計算結果に影響の無いようにしている) これらの...

感染症モデル入門: (2) SIRモデル(離散型)の場合。易しいです

感染症モデル入門 (2) SIRモデル(離散型)の場合。易しい! 1.SIR感染症モデル:一日ごとの人数変化  時間間隔が1日という離散的な時間変化を考えると、前回示した微分方程式での記述は、次のような差分方程式に変換できる。 \begin{eqnarray}   \mbox{感染可能人数}  \qquad  {S_{t + 1}} &=& {S_t} - \beta {S_t}{I_t} \hfill \\   \mbox{感染者数} \qquad  {I_{t + 1}} &=&  {I_t} + \beta {S_t}{I_t} - \gamma {I_t} \hfill \\   \mbox{回復人数} \qquad {R_{t + 1}} &=&  {R_t} + \gamma {I_t} \end{eqnarray} これは連続的な時間の変化$dt$を離散的な時間変化$\Delta t$でおきかえたものである。$dt$が「1秒間隔」であったのに対し、$\Delta t$は1日単位と考えてみよう。実際のCOVID-19のデータは1日単位で発表されるので、そのように考えたほうが実際に合っている。  時間経過を1日と考えたのであるから、感染可能人数を$dS_t \approx \Delta S_t$、感染者数を$dI_t \approx \Delta I_t$, 回復者数を$dR_t \approx \Delta R_t$と表現する。これらも1日あたりの人数の変化である。  そうすると、例えば、感染可能人数を示す微分方程式は$\left( {\frac{{\Delta {S_t}}}{{\Delta t}} = \frac{{\Delta {S_t}}}{1} = \Delta {S_t} = {S_{t + 1}} - {S_t}} \right) =  - \beta {S_t}{I_t}$と変換できる。つまり${S_{t + 1}} - {S_t} =  - \beta {S_{t}}{I_{t}}$を得る。...

感染症モデル入門 (5) 再生産数Rtとそれに基づくリスク管理

再生産数$R_t$を理解する。 1.再生産数とはなにか? SIRモデルから導出する。 離散的なSIR感染症モデルの2番目の式(2)を次のように変形する。 \begin{eqnarray}   {I_{t + 1}} &=& {I_t} + \beta {S_t}{I_t} - \gamma {I_t} \hfill \label{eqtn:1} \\    \Rightarrow \,\,\,\,\,\,{I_{t + 1}} - {I_t} &=& \left( {\beta {S_t} - \gamma } \right){I_t} \hfill \nonumber \\    \Rightarrow \,\,\,\,\,\,\frac{{{I_{t + 1}} - {I_t}}}{{{I_t}}} &=& \left( {\beta {S_t} - \gamma } \right) \end{eqnarray}  最後の式1の左辺の「感染者数の伸び率」が0を超える(下回る)ことは、感染人数$I_t$が増加(減少)することを意味する。言い換えれば、右辺が、 \[\begin{gathered}   \beta {S_{t}} - \gamma  > 0 \,\,\,\,\,\,\Rightarrow \,\,\,\,\,\,{S_{t}} > \frac{\gamma }{\beta } \hfill \\ \end{gathered} \] であれば、感染者数は増加する。 両辺を $\gamma/\beta$ で割ると, 明日の時点における再生産数を得ることができる。 \begin{equation} \boxed{\,\,{{\bar R}_t} \equiv {S_t}\frac{\beta }{\gamma } > 1\,\,} \end{equation}  これを時点$t$における実行再生産数と呼ぶ。回復人数を示す$R_t$と区別するために、$R$の上にバーを付けて再生産数$\bar{R}_t$としている。この意味について以下で議論する。その前に感染症...