Processing math: 0%
スキップしてメイン コンテンツに移動

感染症モデル入門 (3) Excelで感染症 SIRモデルをシミュレーションする


感染症流行をExcelでシミュレーションする(ファイルがダウンロード出来ます)。

1.準備:ファイルのダウンロードをする。

SIRモデルのわかりやすい(つまり最も簡単な)Excelシートを作成した。Excelファイルを用いたシミュレーションは以下の二通りの方法で実行できる。

1.1 「Google スプレッドシート」を用いてオンラインでSIRモデルのシミュレーションを行う
 オンラインでシミュレーションをする場合には、Google スプレッドシートをつかいます。「ここ」をクリックしてください。「感染症数理モデル_入門と応用_森平_2020-05-29」というファイルがGoogle スプレッドシート上で開くはずです。次のような画面を見ることができます。


携帯などから利用していて、通信環境などが良くないときには、オフラインでの実行をおすすめします。>ファイル?オフラインで実行する、とすれば、自分の携帯にダウンロードしてあるGoogle スプレッドシート上でこのプログラムが実行できるはずです。


1.2 Excelファイルとしてダウンロードして、自分のPC上でシミュレーションをおこなう。
 Excelシートとして使い時は、上で示したGoogle スプレッドシートのメニュー上で>ファイル>ダウンロード>MicroSoft Excel (.xlsx) としてファイルをExcelプログラムしてダウンロードしてください。ダウンロードしたファイルを実行すると、次のような画面が現れるはずです。


2.初期値とパラメータ値を設定する。

2.1 Excelのシートで説明しよう。1行目は変数名とパラメー名前である。2行目の薄緑色のセルに具体的な数値を与える必要がある。ここでは次のような値を初期値とパラメータ値として設定している。

1)  感染可能人数の初期値:S_0=100
2)  感染者人数の初期値:I_0=1
3)  回復人数の初期値:R_0=0
4)  感染率:\beta=0.01,つまり1パーセント
5)  回復率:\beta=0.1,つまり10パーセント
(削減率については今回は計算結果に影響の無いようにしている)

これらの数値を入力すれば、直ちに50日間の感染症流行の推移が数値とグラフで示される。3行目と4行目、つまり、1日目と2日目の計算がどのように行われるかは、セルの中身をみるか、下の図で数値例としてしめしてあるので、確認をされたい。


1.3 シナリオ分析: 初期値と感染率βと回復率γを変えてみる


薄緑色のセルの値を様々に変えて、どの様な時に、上の図のオレンジ色の曲線(感染人数の推移)で示したような、感染症の比較的短期間での収束がおこなわれるのか、言い換えれば、初期値やパラメータを変えることによって、こうしたことが「生じないのか」を検討することができる。

枇々木先生(慶應義塾大学理工学部)が、パラメータを変えたときの、シミュレーションを容易にできるように、Excelプログラムを修正したものを作っていいただきました。ここからダウンロードしてください。

Googleスプレッドシートや、携帯やタブレット上のExcelでは動きませんが、PC上のExcelでは動かすことが出来ます。


上の図のグレーの端にある左右の◀あるいは▶をマウスでうごかしてみてください。グラフが変わるはずです。





コメント

このブログの人気の投稿

「8割おじさん」の数理モデル

米国の週刊誌Newwweek誌の日本語版『ニューズウィーク日本版』の最新の 2020年6月9日号 では「日本モデル」と題した特集号で、北海道大学医学部の西浦教授が、「8割おじさん」の数理モデル」という論文を寄稿している。冊子体の本誌でも読めるし、また楽天マガジン・dマガジンなどのオンラインの雑誌読み放題でも全てのページが配信されている。 ニューズウィークとしては異例のアカデミックな論文である。数式こそ無いものの、変数名や学術用語が散見される異例の論文に成っている。同誌で経済や政治関係の記事に親しんでいる人にとっては、ちょっと難しい論文かもしれない。 しかし、非常に示唆に富んだ論文である。特に、「8割削減」の意味を丁重に説明している。最近、8割削減に関して、そこまでする必要がなかったという批判があちこちから出ているが、これをよんでから批判をすべきであろう。 疫学における感染症モデルは勿論、マクロ経済や資産価格決定モデル(CAPMやブラック=ショールズモデルなど)も、所詮は複雑な現実の抽象化に過ぎない。しかし、よいモデルというのは、抽象の革新をつかみ、リスク管理を行う場合、大きな間違いをしない基準となりうる。 また、この号では、”日本のコロナ対策は過剰だったか”という、西浦教授と國井修(世界エイズ・結核・マラリア対策基金)との対談記事も掲載されている。ともにお医者さんでありかつモデリングを研究している二人の言葉は、経済やファイナンスのモデルを用いて仕事をしている、アナリスト、エコノミスト、研究者にとっても学ぶことが大きいとおもう。 國井氏はこう述べている「・・・私達モデラーはリスク評価についてはアンダーアクト(控えめに言う)よりは、オーバーリアクト(大げさに言う)して話をすべきと、肝に命じながらやってきた・・・・」 このことが経済や金融市場のリスク分析に当てはまるかどうか、人それぞれ異なる意見をもっているかもしれない、しかし、1つの教訓だろう。 ただし、西浦先生の論文は、数式を使わないようにしたために、高校数学を理解している人にとっては、帰って難しくなっているきらいがある。むしろ、数式を使って説明したほうが良いかもしれない。ところが、多くの感染症に関する論文や本では、特に日本語で書かれた本や論文では連立微分方程式をつかって説明している。そうす...

感染症モデル入門 (5) 再生産数Rtとそれに基づくリスク管理

再生産数R_tを理解する。 1.再生産数とはなにか? SIRモデルから導出する。 離散的なSIR感染症モデルの2番目の式(2)を次のように変形する。 \begin{eqnarray}   {I_{t + 1}} &=& {I_t} + \beta {S_t}{I_t} - \gamma {I_t} \hfill \label{eqtn:1} \\    \Rightarrow \,\,\,\,\,\,{I_{t + 1}} - {I_t} &=& \left( {\beta {S_t} - \gamma } \right){I_t} \hfill \nonumber \\    \Rightarrow \,\,\,\,\,\,\frac{{{I_{t + 1}} - {I_t}}}{{{I_t}}} &=& \left( {\beta {S_t} - \gamma } \right) \end{eqnarray}  最後の式1の左辺の「感染者数の伸び率」が0を超える(下回る)ことは、感染人数I_tが増加(減少)することを意味する。言い換えれば、右辺が、 \begin{gathered}   \beta {S_{t}} - \gamma  > 0 \,\,\,\,\,\,\Rightarrow \,\,\,\,\,\,{S_{t}} > \frac{\gamma }{\beta } \hfill \\ \end{gathered} であれば、感染者数は増加する。 両辺を \gamma/\beta で割ると, 明日の時点における再生産数を得ることができる。 \begin{equation} \boxed{\,\,{{\bar R}_t} \equiv {S_t}\frac{\beta }{\gamma } > 1\,\,} \end{equation}  これを時点tにおける実行再生産数と呼ぶ。回復人数を示すR_tと区別するために、Rの上にバーを付けて再生産数\bar{R}_tとしている。この意味について以下で議論する。その前に感染症...