スキップしてメイン コンテンツに移動

感染症モデル入門 (6) 再生産数の推定





参考文献

  1. Castillo-Chavez, C., Feng, Z., and Huang, W. (2002). On the computation of Ro and its role on. Mathematical approaches for emerging and reemerging infectious diseases: an introduction, 1, 229.
  2. Cori, A., Ferguson, N. M., Fraser, C., and Cauchemez, S. (2013). A new framework and software to estimate time-varying reproduction numbers during epidemics. American Journal of Epidemiology, 178(9), 1505–1512. https://doi.org/10.1093/aje/kwt133
  3. EpiEstim App. https://shiny.dide.imperial.ac.uk/epiestim/
  4. Khailaie, S., Mitra, T., Bandyopadhyay, A., Schips, M., Mascheroni, P., Vanella, P., and Meyer-Hermann, M. (2020). Estimate of the development of the epidemic reproduction number Rt from Coronavirus SARS-CoV-2 case data and implications for political measures based on prognostics. medRxiv.
  5. Nishiura, H., and Kakehashi, M. (2005). Real time estimation of reproduction numbers based on case notifications. Tropical Medicine and Health, 33(3), 127–132. https://doi.org/10.2149/tmh.33.127
  6. Obadia, T., Haneef, R., and Boëlle, P.-Y. (2012). The R0 package: A toolbox to estimate reproduction numbers for epidemic outbreaks. BMC Medical Informatics and Decision Making, 12(1), 147. https://doi.org/10.1186/1472-6947-12-147
  7. Roberts, M. G., and Heesterbeek, J. A. P. (2003). A new method for estimating the effort required to control an infectious disease. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1522), 1359–1364.
  8. Sahafizadeh, E., & Sartoli, S. (2020). Estimating the reproduction number of COVID-19 in Iran using epidemic modeling. MedRxiv, 2020.03.20.20038422. https://doi.org/10.1101/2020.03.20.20038422
  9. Zhang, S., Diao, M., Yu, W., Pei, L., Lin, Z., and Chen, D. (2020). Estimation of the reproductive number of novel coronavirus (COVID-19) and the probable outbreak size on the Diamond Princess cruise ship: A data-driven analysis. International Journal of Infectious Diseases, 93, 201–204. https://doi.org/10.1016/j.ijid.2020.02.033






コメント

このブログの人気の投稿

感染症モデル入門 (3) Excelで感染症 SIRモデルをシミュレーションする

感染症流行をExcelでシミュレーションする(ファイルがダウンロード出来ます)。 1.準備:ファイルのダウンロードをする。 SIRモデルのわかりやすい(つまり最も簡単な)Excelシートを作成した。Excelファイルを用いたシミュレーションは以下の二通りの方法で実行できる。 1.1 「Google スプレッドシート」を用いてオンラインでSIRモデルのシミュレーションを行う 。  オンラインでシミュレーションをする場合には、Google スプレッドシートをつかいます。「 ここ 」をクリックしてください。「感染症数理モデル_入門と応用_森平_2020-05-29」というファイルがGoogle スプレッドシート上で開くはずです。次のような画面を見ることができます。 携帯などから利用していて、通信環境などが良くないときには、オフラインでの実行をおすすめします。>ファイル?オフラインで実行する、とすれば、自分の携帯にダウンロードしてあるGoogle スプレッドシート上でこのプログラムが実行できるはずです。 1.2 Excelファイルとしてダウンロードして、自分のPC上でシミュレーションをおこなう。  Excelシートとして使い時は、上で示したGoogle スプレッドシートのメニュー上で >ファイル>ダウンロード>MicroSoft Excel (.xlsx)  としてファイルをExcelプログラムしてダウンロードしてください。ダウンロードしたファイルを実行すると、次のような画面が現れるはずです。 2.初期値とパラメータ値を設定する。 2.1 Excelのシートで説明しよう。1行目は変数名とパラメー名前である。2行目の薄緑色のセルに具体的な数値を与える必要がある。ここでは次のような値を初期値とパラメータ値として設定している。 1)  感染可能人数の初期値:$S_0=100$人 2)  感染者人数の初期値:$I_0=1$人 3)  回復人数の初期値:$R_0=0$人 4)  感染率:$\beta=0.01$,つまり1パーセント 5)  回復率:$\beta=0.1$,つまり10パーセント (削減率については今回は計算結果に影響の無いようにしている) これらの...

感染症モデル入門: (2) SIRモデル(離散型)の場合。易しいです

感染症モデル入門 (2) SIRモデル(離散型)の場合。易しい! 1.SIR感染症モデル:一日ごとの人数変化  時間間隔が1日という離散的な時間変化を考えると、前回示した微分方程式での記述は、次のような差分方程式に変換できる。 \begin{eqnarray}   \mbox{感染可能人数}  \qquad  {S_{t + 1}} &=& {S_t} - \beta {S_t}{I_t} \hfill \\   \mbox{感染者数} \qquad  {I_{t + 1}} &=&  {I_t} + \beta {S_t}{I_t} - \gamma {I_t} \hfill \\   \mbox{回復人数} \qquad {R_{t + 1}} &=&  {R_t} + \gamma {I_t} \end{eqnarray} これは連続的な時間の変化$dt$を離散的な時間変化$\Delta t$でおきかえたものである。$dt$が「1秒間隔」であったのに対し、$\Delta t$は1日単位と考えてみよう。実際のCOVID-19のデータは1日単位で発表されるので、そのように考えたほうが実際に合っている。  時間経過を1日と考えたのであるから、感染可能人数を$dS_t \approx \Delta S_t$、感染者数を$dI_t \approx \Delta I_t$, 回復者数を$dR_t \approx \Delta R_t$と表現する。これらも1日あたりの人数の変化である。  そうすると、例えば、感染可能人数を示す微分方程式は$\left( {\frac{{\Delta {S_t}}}{{\Delta t}} = \frac{{\Delta {S_t}}}{1} = \Delta {S_t} = {S_{t + 1}} - {S_t}} \right) =  - \beta {S_t}{I_t}$と変換できる。つまり${S_{t + 1}} - {S_t} =  - \beta {S_{t}}{I_{t}}$を得る。...

感染症モデル入門 (5) 再生産数Rtとそれに基づくリスク管理

再生産数$R_t$を理解する。 1.再生産数とはなにか? SIRモデルから導出する。 離散的なSIR感染症モデルの2番目の式(2)を次のように変形する。 \begin{eqnarray}   {I_{t + 1}} &=& {I_t} + \beta {S_t}{I_t} - \gamma {I_t} \hfill \label{eqtn:1} \\    \Rightarrow \,\,\,\,\,\,{I_{t + 1}} - {I_t} &=& \left( {\beta {S_t} - \gamma } \right){I_t} \hfill \nonumber \\    \Rightarrow \,\,\,\,\,\,\frac{{{I_{t + 1}} - {I_t}}}{{{I_t}}} &=& \left( {\beta {S_t} - \gamma } \right) \end{eqnarray}  最後の式1の左辺の「感染者数の伸び率」が0を超える(下回る)ことは、感染人数$I_t$が増加(減少)することを意味する。言い換えれば、右辺が、 \[\begin{gathered}   \beta {S_{t}} - \gamma  > 0 \,\,\,\,\,\,\Rightarrow \,\,\,\,\,\,{S_{t}} > \frac{\gamma }{\beta } \hfill \\ \end{gathered} \] であれば、感染者数は増加する。 両辺を $\gamma/\beta$ で割ると, 明日の時点における再生産数を得ることができる。 \begin{equation} \boxed{\,\,{{\bar R}_t} \equiv {S_t}\frac{\beta }{\gamma } > 1\,\,} \end{equation}  これを時点$t$における実行再生産数と呼ぶ。回復人数を示す$R_t$と区別するために、$R$の上にバーを付けて再生産数$\bar{R}_t$としている。この意味について以下で議論する。その前に感染症...